Methoxynepetaefolin, A New Labdane Diterpene

from Leonotis nepetaefolia

P. S. Manchand*

Department of Chemistry Harvard University Cambridge, Massachusetts 02138

(Received in USA 19 March 1973; received in UK for publication 19 April 1973)

Our recent studies^{1,2} on the constituents of the tropical plant <u>Leonotis nepetaefolia</u>

R. Br (Labiatae) have resulted in the isolation and structural elucidation of a number of new labdane diterpenes of which nepetaefolin (I) is the most abundant. This communication reports the isolation of an additional but biogenetically interesting labdane diterpene, methoxynepetaefolin (II), as a minor constituent of L. nepetaefolia.

Methoxynepetaefolin has the molecular formula $C_{23}H_{32}O_8$ (M⁺ 436.1985), mp 275-278⁰, $\{\alpha\}_D^{26}$ 35.8⁰ (C 1.2, CHCl₃), $v_{max}^{CHCl_3}$ 1737 (OAc), 1725 (δ -lactone) and 1031 cm⁻¹ (OMe).

The n.m.r. spectrum $(CDCl_3)^3$ of methoxynepetaefolin revealed a close structural similarity to that of nepetaefolin. Thus, two sharp 3H singlets at 1.16 and 2.02 are attributed to methyl and acetate groups at C_4 and C_6 respectively; absorption due to the methine proton at C_6 appeared as overlapping triplets centred at 5.20. Three AB quartets were discernible: the first of these, at 2.30 and 2.62 (J = 3.5 Hz), is due to the protons of the terminal epoxide at C_8 ; the second, at 3.53 and 3.78 (J = 8 Hz), represents absorption due to the methylene protons on C_{16} ; the third, at 4.00 and 5.10 (J = 11 Hz), is indicative of the methylene protons on C_{20} which form part of the δ -lactone system. A pair of doublets at 4.96 and 5.02 (J = 6 and 3 Hz) are attributed to the X part of an ABX system, these absorptions are therefore ascribed to the proton on C_{15} . Absorption due to the methoxyl group appeared as a sharp singlet at 3.38.

No structurally diagnostic features of any significance could be obtained from the mass spectrum⁴ of methoxynepetaefolin; the main peaks present were at m/e 405 (M-OCH₃), 376 (M-CH₃CO₂H) and 361 (M-CH₃CO₂H - CH₃).

^{*}Present address: Chemical Research Department, Hoffmann-La Roche Inc., Nutley, New Jersey 07110.

The above spectral evidence leads to structure (II) for methoxynepetaefolin. Confirmation of this structure was provided by its conversion to a mixture of nepetaefuran² (III) and isonepetaefuran (IV) when treated with 1% methanolic sulfuric acid at room temperature for 3 hr. The stereochemistry associated with centres ${\rm C}_{13}$ and ${\rm C}_{15}$ was not determined.

Biogenetically the methoxyl group in methoxynepetaefolin is most likely formed by C_1 methylation (S-methionine?) of the corresponding hemi-acetal. Compounds containing the hemi-acetal⁵ and γ -lactone⁶ functions at C_{15} in premarrubiin⁷ have recently been isolated.

Acknowledgement. I thank Professor J. D. White for his interest and for providing laboratory facilities.

References

- 1. J. D. White, P. S. Manchand and W. B. Whalley, Chem. Comms., 1315 (1969).
- 2. J. D. White and P. S. Manchand, J. Amer. Chem. Soc. <u>92</u>, 5527 (1970), and unpublished work.
- 3. Determined on a Varian HA-100 spectrometer with T.M.S. as internal standard. Chemical shifts are expressed in δ -values.
 - 4. Mass spectral data were obtained from an AEI MS-9 double focusing instrument.
 - 5. J. N. B. Fulke, M. S. Henderson and R. McCrindle, J. Chem. Soc. (C)., 807 (1968).
 - 6. E. R. Kaplan and D. E. A. Rivett, J. Chem. Soc. (C), 262 (1968).
 - 7. M. S. Henderson and R. McCrindle, J. Chem. Soc. (C), 2014 (1969).